
MDSML: An XML Binding to the
Grid Object Specification
A proposal to be discussed as part of the Gridforum

Version: 0.3.0

Gregor von Laszewski and Peter Lane

Mathematics and Computer Science Division at Argonne National Laboratory

9700 S. Cass Avenue

Argonne, IL 60439 U.S.A.

DRAFT: This is not a final draft; please send comments to gregor@mcs.anl.gov
Editor: Gregor von Laszewski

Contents

1 Introduction 2
1.1 Notation . 2
1.2 Relationship to DSML . 2

2 Example 2
2.1 Aggregate Class . 3
2.2 Object Class . 3
2.3 Entry . 5

3 MDSML Document Type Definition 6

4 Conversion Tools 7

A Acknowledgement 10

1

1 Introduction

The Metacomputing Directory Services Markup Language (MDSML) allows one to describe objects specified
with the Grid Object Specification (GOS) [3]. The purpose of GOS is to enable to define a large number of
objects that are used as part of the Grid Information Services. Since objects are typically defined by various
groups, it is essential that objects be defined constantly and easily. GOS provides one solution. With the advent
of XML [1] and sophisticated tools [4] that can be used to parse and translate XML documents, it is of great
advantage to provide an XML binding to GOS. Besides the definition of schemas through GOS, MDSML allows
one also to formulate entries that follow the specifications defined by the language.

We have developed prototype tools that can convert MDSML into various output formats, including HTML,
DSML, ASCII, and LATEX. We expect to extend these prototypes to include tools that also can verify entries.
Because of the need for scalable Grid Information Services the ability of client-side, verification of entries is of
utmost importance to reduce the load on information servers.

1.1 Notation

The terminology of [3] is used in this documentation. We assume the reader is sufficiently familiar with this
notation.

1.2 Relationship to DSML

Originally MDSML was called gosML. Recently we changed the name to reflect the close relationship to the
Directory Services Markup Language (DSML) [2], defined as industry standard. MDSML was defined before the
first official DSML specification was released, but we have made some changes to the original MDSML to bring
the languages closer together.

One of the most challanging tasks an information services group faces is to specify the objects and their at-
tributes so that uniform infrastructures in a heterogeneous environment can be created. We feel that the current
DSML language does not allow one to define all the constructs that are necessary to define, maintain, and ex-
tend schemas between a large heterogeneous group of people defining and maintaining a distributed information
service. To underline this, we quote from [2] :

It is not an initial goal of DSML to specify the attributes that all directories must contain, or the
method with which the directory information is accessed from the directory. The expectation is
that standard protocols (such as LDAP), proprietary access protocols (such as Novell’s NDAP) and
proprietary APIs (such as Microsoft’s ADSI) could produce DSML documents as an optional output.

Following this intention of the use of DSML, one can produce a translator that transforms MDSML documents
to DSML. Although the inverse is also possible, it will not allow one to formulate all the semantic information
that is defined in MDSML through a DSML document.

2 Example

An MDSML document can have three different objects: object classes, aggregate classes, and entries. Object
classes and aggregate classes are used to define the structure in which entries are defined. We follow the example
as used in [3].

2

2.1 Aggregate Class

It is straightforward to transform an aggregate class specified in the GOS format to MDSML. The example below
demonstrates how to define an aggregate object.

<mdsml:aggregateclass name=’’Location’’ namespace=’’Grid’’>
<mdsml:description>
This aggregate object defines a geographical location. A
geographical location is often used for the graphical display
of prganizations or compute resources on a map.
</mdsml:description>
<mdsml:attribute name=’’static’’

type=’’cisboolean’’
occurence=’’single’’
required=’’true’’>

<mdsml:description>
In case the location is fixed, static is set to true
otherwise false.
</description>

</mdsml:attribute>
<mdsml:attribute name=’’latitude’’

type=’’cisfloat’’
occurence=’’single’’
required=’’false’’>

<mdsml:description>
Specifies the value of the latitude in the form
‘‘degree minute second’’
</mdsml:description>

</mdsml:attribute>
<mdsml:attribute name=’’longitude’’

type=’’cisfloat’’
occurence=’’single’’
required=’’false’’>

<mdsml:description>
Specifies the value of the longitude in the form
‘‘degree minute second’’
</mdsml:description>

</mdsml:attribute>
</mdsml:aggregateclass>

2.2 Object Class

An object class is as simple to define as an aggregate class. In contrast to an aggregate class, however, the object
class contains additional tags, such as superior, rdn, childof, and aggregates. We have chosen the name superior
to represent the SUBCLASS OF block in GOS. The choice of name is motivated by the fact that the tag is called
in such a manner in DSML.

In the following example we have left out further descriptions. It is obvious that a correct usage of the
definition of an object contains detailed descriptive tags to describe the usage of an attribute or the object itself.

3

<mdsml:objectclass name=’’ComputeResource’’ namespace=’’Grid’’>

<mdsml:description>
...

</mdsml:description>

<mdsml:superior name=’’PhysicalResource’’ namespace=’’Grid’’/>
<mdsml:rdn name=’’hn’’ expansion=’’hostName’’/>

<mdsml:childof>
<mdsml:objectname name=’’organizationalUnit’’ namespace=’’Grid’’>
<mdsml:objectname name=’’organization’’ namespace=’’Grid’’>

</mdsml:childof>

<mdsml:aggregates>
<mdsml:objectname name=’’location’’ namespace=’’Grid’’>

</mdsml:aggregates>

<mdsml:attribute name=’’canonicalSystemName’’
type=’’cis’’
occurence=’’single’’
required=’’true’’>

<mdsml:description>
...
</mdsml:description>

</mdsml:attribute>

<mdsml:attribute name=’’manufacturer’’
type=’’cis’’
occurence=’’single’’
required=’’true’’>

<mdsml:description>
...
</mdsml:description>

</mdsml:attribute>

<mdsml:attribute name=’’manufacturer’’
type=’’cis’’
occurence=’’single’’
required=’’true’’>

<mdsml:description>
...
</mdsml:description>

</mdsml:attribute>

<mdsml:attribute name=’’model’’
type=’’ces’’
occurence=’’single’’

4

required=’’true’’>
<mdsml:description>
...
</mdsml:description>

</mdsml:attribute>

<mdsml:attribute name=’’diskDrive’’
type=’’cis’’
occurence=’’multiple’’
required=’’false’’>

<mdsml:description>
...
</mdsml:description>

</mdsml:attribute>

</mdsml:objectclass>

2.3 Entry

Object classes and aggregates together describe the schema of the information to be represented. An instantiation
of data that is described via a schema is often called an entry. An entry is defined by its distinguished name, and
attributes that can have multiple values depending on its schema definition. Multiple entries can be included in a
document that is defined by MDSML. A client library must be able to verify whether entries follow the definition
of a particular schema.

<mdsml:entry dn=’’hn=computer.anl.gov,
o=Argonne National Laboratory,
o=Globus, C=US’’>

<mdsml:entry-oc>
<mdsml:value> Grid::ComputeResource </mdsml:value>

</mdsml:entry-oc>

<mdsml:entry-at name=’’canonicalSystemName’’>
<mdsml:value> linux-386-2.012 <mdsml:value>

</mdsml:entry-at>
<mdsml:entry-at name=’’manufacturer’’>

<mdsml:value> IBM <mdsml:value>
</mdsml:entry-at>
<mdsml:entry-at name=’’model’’>

<mdsml:value> IBM <mdsml:value>
</mdsml:entry-at>
<mdsml:entry-at name=’’serialNumber’’>

<mdsml:value> T300Th67617653276 <mdsml:value>
</mdsml:entry-at>
<mdsml:entry-at name=’’static’’>

<mdsml:value> false <mdsml:value>
</mdsml:entry-at>
<mdsml:entry-at name=’’longitude’’>

<mdsml:value> 55 12 3 <mdsml:value>

5

</mdsml:entry-at>
</mdsml:entry-at name=’’latitude’’>

<mdsml:value> 30 4 5 <mdsml:value>
</mdsml:entry-at>

</mdsml:entry>

3 MDSML Document Type Definition

This section contains the full document type definition (DTD) of MDSML.

<!-- VERSION October, 2000 -->

<!ELEMENT mdsml (objectclass | aggregateclass | entry)*>

<!ELEMENT objectclass ((description)?,
(superior)?,

(rdn),
(childof)?,
(aggregates)?,

(attribute)*)>
<!ATTLIST objectclass

name CDATA #REQUIRED
namespace CDATA "Grid"
oid CDATA #IMPLIED

>

<!ELEMENT aggregateclass ((description)?,
(childof)?,
(aggregates)?,

(attribute)*)>
<!ATTLIST aggregateclass

name CDATA #REQUIRED
namespace CDATA "Grid"
oid CDATA #IMPLIED

>
<!ELEMENT description (#PCDATA)>

<!ELEMENT oid EMPTY>
<!ATTLIST oid

value CDATA #REQUIRED
>
<!ELEMENT superior EMPTY>
<!ATTLIST superior

name CDATA #REQUIRED
namespace CDATA "Grid"

>
<!ELEMENT rdn EMPTY>

6

<!ATTLIST rdn
name CDATA #REQUIRED
expansion CDATA #REQUIRED

>
<!ELEMENT childof (objectname)+>

<!ELEMENT aggregates (objectname)+>

<!ELEMENT objectname EMPTY>
<!ATTLIST objectname

name CDATA #REQUIRED
namespace CDATA "Grid"

>
<!ELEMENT attribute (description)>
<!ENTITY % STRTYPE "(cis | ces | bin | int | dn

| cisfloat | cisdate | cisboolean | tel | url)">
<!ENTITY % BOOLEAN "(true | false)">
<!ENTITY % OCCUROP "(single | multiple)">
<!ATTLIST attribute

name CDATA #REQUIRED
type %STRTYPE; "cis"
oid CDATA #IMPLIED
required %BOOLEAN; "false"
occurrence %OCCUROP; "single"

>
<!ELEMENT entry ((entry-oc),

(entry-at)*)>
<!ATTLIST entry

dn CDATA #REQUIRED
>
<!ELEMENT entry-oc (value+)>
<!ELEMENT entry-at (value+)>
<!ATTLIST entry-at

name CDATA #REQUIRED
>
<!ELEMENT value (#PCDATA)* >

4 Conversion Tools

Included here is an ascii version of the manpage for the mdsml-converter tool which we have developed.

mdsml-converter(1) User Manuals mdsml-converter(1)
NAME
mdsml-converter <-> Convert MDSML documents to other formats

SYNOPSIS
mdsml-converter --input input-file [options]

7

DESCRTPTION
mdsml-converter is a bourne shell script wrapper for
org.globus.mdsml.Converter which comes packaged with the
Java CoG Kit. Converter is a Java (SDK2) application that
reads an MDSML (XML) document, converts the information to
another format, and then writes the converted document to
either standard out or a user-specified file. Because
this is a Java program, the jar file containing needed
classes must be located. To do this, mdsml-converter
requires that the COG_INSTALL_PATH environment variable be
set to the installation directory of the Java CoG Kit.
Currently, the supported output formats include DSML, GOS,
MDS Attributes, MDS Objectclasses, an HTML version of GOS,
a LaTex version of GOS, LDAPv3 subschema, as well as DIT,
inheritance, and aggregate graphs in dot input format.

OPTIONS
--format output-format

The output format (gos | attribute | objectclass |
html | latex | dsml | dit | inheritance | ldapv3 |
aggregate)

--help
Display the usage screen.

--output output
The output file for the converted document (default
is stdout).

--seperator seperator
The namespace/type seperator (default is ’::’).

--oid-db oid-database
Specify the ldap "at" file which serves as a
database for retrieving OIDs. This option also
flags the converters to write out OIDs. If this
option is not used, OIDs will not be displayed.

--with-namespace|--without-namespace
Do or do not output namespaces for formats that may
contain them (default is without).

--with-alternate|--without-alternate
Do or do not generate an alternate output (default
is without). This is currently only used in LaTex.

OBTAINING THE SOFTWARE
mdsml-converter is distributed with the Java CoG Kit
(CoG). To obtain CoG, visit the CoG website at
http://www.globus.org/cog.

BUILDING AND INSTALLING THE SOFTWARE
To build the Java CoG Kit, a traditional configure...
make...make install sequence is employed. If you only
wish to build the packages needed to run mdsml-converter,
perform the following configure command substituting an
appropritate installation prefix:

8

configure --prefix=<installation prefix> --without-applet
--without-common --without-example --without-gara
--without-gram --without-io --without-mds --without-myproxy
--without-rsl --without-security --without-tools
Perform a make to build the selected packages.
Perform a make install to jar up all the compiled classes
and install the software under the given installation
prefix directory. Finally, you must make sure the
COG_INSTALL_PATH environment variable is set appropriately
to the installation prefix directory. This will allow the
script to locate the appropriate java classes.

SAMPLE EXECUTION
mdsml-converter --input input.mdsml --output output.dsml
--format dsml

MDSML DTD
In order to validate and parse an MDSML document, the
document must point to a valid MDSML DTD in it’s DOCTYPE
declaration. The latest DTD can be found in the CoG
distribution’s "include" directory or on the Gridforum
GIS Working Group’s web site (http://www.mcs.anl.gov/gridforum/gis).

KNOWN BUGS AND LIMITATIONS
TO DO (for developers)
AUTHORS
The main core of the development was done by Peter Lane
<lane@mcs.anl.gov>. HTML enhancements and LaTex help was
provided by Gregor von Laszewski <gregor@mcs.anl.gov>.

9

A Acknowledgement

An earlier but incomplete prototype of gosML was defined by X. Peng and Gregor von Laszewski.

References

[1] GRAH, I. S., AND QUIN, L. XML Specificaton Guide. Wiley, 1999.

[2] TAUBER, J., HAY, T., BEAUVAIS, T., BURATI, M., AND ROBERTS, A. Directory Services Markup Lan-
guage (DSML). http://www.dsml.org, 2 Dec. 1999.

[3] VON LASZEWSKI, G., FITZGERALD, S., DIDIER, B., SCHUCHARDT, K., AND LANE, P. GOS: Defining
Schemas for the Grid Information Services. Gridforum, http://www-unix.mcs.anl.gov/gridforum/gis, Febru-
ary 2000. GIS-WG-1.

[4] xml.com. http://www.xml.com/xml/pub.

10

